Linux websever 5.15.0-153-generic #163-Ubuntu SMP Thu Aug 7 16:37:18 UTC 2025 x86_64
Apache/2.4.52 (Ubuntu)
: 192.168.3.70 | : 192.168.1.99
Cant Read [ /etc/named.conf ]
8.1.2-1ubuntu2.23
urlab
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
README
+ Create Folder
+ Create File
/
usr /
lib /
python3 /
dist-packages /
numpy /
core /
[ HOME SHELL ]
Name
Size
Permission
Action
__pycache__
[ DIR ]
drwxr-xr-x
include
[ DIR ]
drwxr-xr-x
lib
[ DIR ]
drwxr-xr-x
tests
[ DIR ]
drwxr-xr-x
__init__.py
5.24
KB
-rw-r--r--
__init__.pyi
126
B
-rw-r--r--
_add_newdocs.py
187.41
KB
-rw-r--r--
_add_newdocs_scalars.py
8.59
KB
-rw-r--r--
_asarray.py
4.08
KB
-rw-r--r--
_asarray.pyi
1.89
KB
-rw-r--r--
_dtype.py
9.61
KB
-rw-r--r--
_dtype_ctypes.py
3.59
KB
-rw-r--r--
_exceptions.py
5.99
KB
-rw-r--r--
_internal.py
26.73
KB
-rw-r--r--
_internal.pyi
1.34
KB
-rw-r--r--
_methods.py
10.54
KB
-rw-r--r--
_multiarray_tests.cpython-310-...
122.6
KB
-rw-r--r--
_multiarray_umath.cpython-310-...
3.63
MB
-rw-r--r--
_operand_flag_tests.cpython-31...
14.2
KB
-rw-r--r--
_rational_tests.cpython-310-x8...
43.46
KB
-rw-r--r--
_simd.cpython-310-x86_64-linux...
1.91
MB
-rw-r--r--
_string_helpers.py
2.79
KB
-rw-r--r--
_struct_ufunc_tests.cpython-31...
14.38
KB
-rw-r--r--
_type_aliases.py
7.1
KB
-rw-r--r--
_type_aliases.pyi
520
B
-rw-r--r--
_ufunc_config.py
13.07
KB
-rw-r--r--
_ufunc_config.pyi
1.22
KB
-rw-r--r--
_umath_tests.cpython-310-x86_6...
34.8
KB
-rw-r--r--
arrayprint.py
60.18
KB
-rw-r--r--
arrayprint.pyi
4.56
KB
-rw-r--r--
cversions.py
347
B
-rw-r--r--
defchararray.py
68.1
KB
-rw-r--r--
einsumfunc.py
50.24
KB
-rw-r--r--
einsumfunc.pyi
3.62
KB
-rw-r--r--
fromnumeric.py
119.9
KB
-rw-r--r--
fromnumeric.pyi
7.83
KB
-rw-r--r--
function_base.py
18.57
KB
-rw-r--r--
function_base.pyi
1.44
KB
-rw-r--r--
generate_numpy_api.py
6.94
KB
-rw-r--r--
getlimits.py
19.31
KB
-rw-r--r--
machar.py
10.56
KB
-rw-r--r--
memmap.py
11.41
KB
-rw-r--r--
multiarray.py
54.01
KB
-rw-r--r--
numeric.py
74.93
KB
-rw-r--r--
numeric.pyi
4.76
KB
-rw-r--r--
numerictypes.py
16.91
KB
-rw-r--r--
numerictypes.pyi
2.85
KB
-rw-r--r--
overrides.py
7.94
KB
-rw-r--r--
records.py
36.58
KB
-rw-r--r--
setup.py
44.62
KB
-rw-r--r--
setup_common.py
19.31
KB
-rw-r--r--
shape_base.py
28.32
KB
-rw-r--r--
shape_base.pyi
1.04
KB
-rw-r--r--
umath.py
1.99
KB
-rw-r--r--
umath_tests.py
389
B
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : fromnumeric.pyi
import sys import datetime as dt from typing import Optional, Union, Sequence, Tuple, Any, overload, TypeVar from numpy import ( ndarray, number, integer, intp, bool_, generic, _OrderKACF, _OrderACF, _ModeKind, _PartitionKind, _SortKind, _SortSide, ) from numpy.typing import ( DTypeLike, ArrayLike, _ShapeLike, _Shape, _ArrayLikeBool_co, _ArrayLikeInt_co, _NumberLike_co, ) if sys.version_info >= (3, 8): from typing import Literal else: from typing_extensions import Literal # Various annotations for scalars # While dt.datetime and dt.timedelta are not technically part of NumPy, # they are one of the rare few builtin scalars which serve as valid return types. # See https://github.com/numpy/numpy-stubs/pull/67#discussion_r412604113. _ScalarNumpy = Union[generic, dt.datetime, dt.timedelta] _ScalarBuiltin = Union[str, bytes, dt.date, dt.timedelta, bool, int, float, complex] _Scalar = Union[_ScalarBuiltin, _ScalarNumpy] # Integers and booleans can generally be used interchangeably _ScalarGeneric = TypeVar("_ScalarGeneric", bound=generic) _Number = TypeVar("_Number", bound=number) # The signature of take() follows a common theme with its overloads: # 1. A generic comes in; the same generic comes out # 2. A scalar comes in; a generic comes out # 3. An array-like object comes in; some keyword ensures that a generic comes out # 4. An array-like object comes in; an ndarray or generic comes out def take( a: ArrayLike, indices: _ArrayLikeInt_co, axis: Optional[int] = ..., out: Optional[ndarray] = ..., mode: _ModeKind = ..., ) -> Any: ... def reshape( a: ArrayLike, newshape: _ShapeLike, order: _OrderACF = ..., ) -> ndarray: ... def choose( a: _ArrayLikeInt_co, choices: ArrayLike, out: Optional[ndarray] = ..., mode: _ModeKind = ..., ) -> Any: ... def repeat( a: ArrayLike, repeats: _ArrayLikeInt_co, axis: Optional[int] = ..., ) -> ndarray: ... def put( a: ndarray, ind: _ArrayLikeInt_co, v: ArrayLike, mode: _ModeKind = ..., ) -> None: ... def swapaxes( a: ArrayLike, axis1: int, axis2: int, ) -> ndarray: ... def transpose( a: ArrayLike, axes: Union[None, Sequence[int], ndarray] = ... ) -> ndarray: ... def partition( a: ArrayLike, kth: _ArrayLikeInt_co, axis: Optional[int] = ..., kind: _PartitionKind = ..., order: Union[None, str, Sequence[str]] = ..., ) -> ndarray: ... def argpartition( a: ArrayLike, kth: _ArrayLikeInt_co, axis: Optional[int] = ..., kind: _PartitionKind = ..., order: Union[None, str, Sequence[str]] = ..., ) -> Any: ... def sort( a: ArrayLike, axis: Optional[int] = ..., kind: Optional[_SortKind] = ..., order: Union[None, str, Sequence[str]] = ..., ) -> ndarray: ... def argsort( a: ArrayLike, axis: Optional[int] = ..., kind: Optional[_SortKind] = ..., order: Union[None, str, Sequence[str]] = ..., ) -> ndarray: ... @overload def argmax( a: ArrayLike, axis: None = ..., out: Optional[ndarray] = ..., ) -> intp: ... @overload def argmax( a: ArrayLike, axis: Optional[int] = ..., out: Optional[ndarray] = ..., ) -> Any: ... @overload def argmin( a: ArrayLike, axis: None = ..., out: Optional[ndarray] = ..., ) -> intp: ... @overload def argmin( a: ArrayLike, axis: Optional[int] = ..., out: Optional[ndarray] = ..., ) -> Any: ... @overload def searchsorted( a: ArrayLike, v: _Scalar, side: _SortSide = ..., sorter: Optional[_ArrayLikeInt_co] = ..., # 1D int array ) -> intp: ... @overload def searchsorted( a: ArrayLike, v: ArrayLike, side: _SortSide = ..., sorter: Optional[_ArrayLikeInt_co] = ..., # 1D int array ) -> ndarray: ... def resize( a: ArrayLike, new_shape: _ShapeLike, ) -> ndarray: ... @overload def squeeze( a: _ScalarGeneric, axis: Optional[_ShapeLike] = ..., ) -> _ScalarGeneric: ... @overload def squeeze( a: ArrayLike, axis: Optional[_ShapeLike] = ..., ) -> ndarray: ... def diagonal( a: ArrayLike, offset: int = ..., axis1: int = ..., axis2: int = ..., # >= 2D array ) -> ndarray: ... def trace( a: ArrayLike, # >= 2D array offset: int = ..., axis1: int = ..., axis2: int = ..., dtype: DTypeLike = ..., out: Optional[ndarray] = ..., ) -> Any: ... def ravel(a: ArrayLike, order: _OrderKACF = ...) -> ndarray: ... def nonzero(a: ArrayLike) -> Tuple[ndarray, ...]: ... def shape(a: ArrayLike) -> _Shape: ... def compress( condition: ArrayLike, # 1D bool array a: ArrayLike, axis: Optional[int] = ..., out: Optional[ndarray] = ..., ) -> ndarray: ... @overload def clip( a: ArrayLike, a_min: ArrayLike, a_max: Optional[ArrayLike], out: Optional[ndarray] = ..., **kwargs: Any, ) -> Any: ... @overload def clip( a: ArrayLike, a_min: None, a_max: ArrayLike, out: Optional[ndarray] = ..., **kwargs: Any, ) -> Any: ... def sum( a: ArrayLike, axis: _ShapeLike = ..., dtype: DTypeLike = ..., out: Optional[ndarray] = ..., keepdims: bool = ..., initial: _NumberLike_co = ..., where: _ArrayLikeBool_co = ..., ) -> Any: ... @overload def all( a: ArrayLike, axis: None = ..., out: None = ..., keepdims: Literal[False] = ..., ) -> bool_: ... @overload def all( a: ArrayLike, axis: Optional[_ShapeLike] = ..., out: Optional[ndarray] = ..., keepdims: bool = ..., ) -> Any: ... @overload def any( a: ArrayLike, axis: None = ..., out: None = ..., keepdims: Literal[False] = ..., ) -> bool_: ... @overload def any( a: ArrayLike, axis: Optional[_ShapeLike] = ..., out: Optional[ndarray] = ..., keepdims: bool = ..., ) -> Any: ... def cumsum( a: ArrayLike, axis: Optional[int] = ..., dtype: DTypeLike = ..., out: Optional[ndarray] = ..., ) -> ndarray: ... def ptp( a: ArrayLike, axis: Optional[_ShapeLike] = ..., out: Optional[ndarray] = ..., keepdims: bool = ..., ) -> Any: ... def amax( a: ArrayLike, axis: Optional[_ShapeLike] = ..., out: Optional[ndarray] = ..., keepdims: bool = ..., initial: _NumberLike_co = ..., where: _ArrayLikeBool_co = ..., ) -> Any: ... def amin( a: ArrayLike, axis: Optional[_ShapeLike] = ..., out: Optional[ndarray] = ..., keepdims: bool = ..., initial: _NumberLike_co = ..., where: _ArrayLikeBool_co = ..., ) -> Any: ... # TODO: `np.prod()``: For object arrays `initial` does not necessarily # have to be a numerical scalar. # The only requirement is that it is compatible # with the `.__mul__()` method(s) of the passed array's elements. # Note that the same situation holds for all wrappers around # `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`). def prod( a: ArrayLike, axis: Optional[_ShapeLike] = ..., dtype: DTypeLike = ..., out: Optional[ndarray] = ..., keepdims: bool = ..., initial: _NumberLike_co = ..., where: _ArrayLikeBool_co = ..., ) -> Any: ... def cumprod( a: ArrayLike, axis: Optional[int] = ..., dtype: DTypeLike = ..., out: Optional[ndarray] = ..., ) -> ndarray: ... def ndim(a: ArrayLike) -> int: ... def size(a: ArrayLike, axis: Optional[int] = ...) -> int: ... def around( a: ArrayLike, decimals: int = ..., out: Optional[ndarray] = ..., ) -> Any: ... def mean( a: ArrayLike, axis: Optional[_ShapeLike] = ..., dtype: DTypeLike = ..., out: Optional[ndarray] = ..., keepdims: bool = ..., ) -> Any: ... def std( a: ArrayLike, axis: Optional[_ShapeLike] = ..., dtype: DTypeLike = ..., out: Optional[ndarray] = ..., ddof: int = ..., keepdims: bool = ..., ) -> Any: ... def var( a: ArrayLike, axis: Optional[_ShapeLike] = ..., dtype: DTypeLike = ..., out: Optional[ndarray] = ..., ddof: int = ..., keepdims: bool = ..., ) -> Any: ...
Close